Lower Bounds for Oblivious Subspace Embeddings

نویسندگان

  • Jelani Nelson
  • Huy L. Nguyen
چکیده

An oblivious subspace embedding (OSE) for some ε, δ ∈ (0, 1/3) and d ≤ m ≤ n is a distribution D over Rm×n such that for any linear subspace W ⊂ Rn of dimension d, P Π∼D (∀x ∈W, (1− ε)‖x‖2 ≤ ‖Πx‖2 ≤ (1 + ε)‖x‖2) ≥ 1− δ. We prove that any OSE with δ < 1/3 must have m = Ω((d + log(1/δ))/ε2), which is optimal. Furthermore, if every Π in the support of D is sparse, having at most s non-zero entries per column, then we show tradeoff lower bounds between m and s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nearly Tight Oblivious Subspace Embeddings by Trace Inequalities

We present a new analysis of sparse oblivious subspace embeddings, based on the ”matrix Chernoff” technique. These are probability distributions over (relatively) sparse matrices such that for any d-dimensional subspace of R, the norms of all vectors in the subspace are simultaneously approximately preserved by the embedding with high probability–typically with parameters depending on d but not...

متن کامل

Tight Bounds for $\ell_p$ Oblivious Subspace Embeddings

An lp oblivious subspace embedding is a distribution over r × n matrices Π such that for any fixed n× d matrix A, Pr Π [for all x, ‖Ax‖p ≤ ‖ΠAx‖p ≤ κ‖Ax‖p] ≥ 9/10, where r is the dimension of the embedding, κ is the distortion of the embedding, and for an n-dimensional vector y, ‖y‖p = ( ∑n i=1 |yi|) 1/p is the lp-norm. Another important property is the sparsity of Π, that is, the maximum numbe...

متن کامل

Subspace Embeddings and ℓp-Regression Using Exponential Random Variables

Oblivious low-distortion subspace embeddings are a crucial building block for numerical linear algebra problems. We show for any real p, 1 ≤ p <∞, given a matrix M ∈ Rn×d with n d, with constant probability we can choose a matrix Π with max(1, n1−2/p)poly(d) rows and n columns so that simultaneously for all x ∈ R, ‖Mx‖p ≤ ‖ΠMx‖∞ ≤ poly(d)‖Mx‖p. Importantly, ΠM can be computed in the optimal O(n...

متن کامل

Subspace Embeddings and \(\ell_p\)-Regression Using Exponential Random Variables

Oblivious low-distortion subspace embeddings are a crucial building block for numerical linear algebra problems. We show for any real p, 1 ≤ p < ∞, given a matrix M ∈ R with n ≫ d, with constant probability we can choose a matrix Π with max(1, n)poly(d) rows and n columns so that simultaneously for all x ∈ R, ‖Mx‖p ≤ ‖ΠMx‖∞ ≤ poly(d)‖Mx‖p. Importantly, ΠM can be computed in the optimal O(nnz(M)...

متن کامل

Subspace Embeddings for the Polynomial Kernel

Sketching is a powerful dimensionality reduction tool for accelerating statistical learning algorithms. However, its applicability has been limited to a certain extent since the crucial ingredient, the so-called oblivious subspace embedding, can only be applied to data spaces with an explicit representation as the column span or row span of a matrix, while in many settings learning is done in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014